Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.858
Filtrar
1.
PLoS One ; 19(5): e0303359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728321

RESUMEN

As-produced carbon nanotubes contain impurities which can dominate the properties of the material and are thus undesired. Herein we present a multi-step purification treatment that combines the use of steam and hydrochloric acid in an iterative manner. This allows the reduction of the iron content down to 0.2 wt. % in samples of single-walled carbon nanotubes (SWCNTs). Remarkably, Raman spectroscopy analysis reveals that this purification strategy does not introduce structural defects into the SWCNTs' backbone. To complete the study, we also report on a simplified approach for the quantitative assessment of iron using UV-Vis spectroscopy. The amount of metal in SWCNTs is assessed by dissolving in HCl the residue obtained after the complete combustion of the sample. This leads to the creation of hexaaquairon(III) chloride which allows the determination of the amount of iron, from the catalyst, by UV-Vis spectroscopy. The main advantage of the proposed strategy is that it does not require the use of additional complexing agents.


Asunto(s)
Ácido Clorhídrico , Hierro , Nanotubos de Carbono , Espectrofotometría Ultravioleta , Espectrometría Raman , Vapor , Nanotubos de Carbono/química , Hierro/análisis , Hierro/química , Ácido Clorhídrico/química , Espectrometría Raman/métodos
2.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735951

RESUMEN

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Virus de la Diarrea Epidémica Porcina , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Animales , Porcinos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Nanotubos de Carbono/química , Límite de Detección , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Anticuerpos Monoclonales/inmunología , Transistores Electrónicos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Anticuerpos Antivirales/inmunología , Diseño de Equipo
3.
Mikrochim Acta ; 191(6): 309, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714599

RESUMEN

Copper-doped carbon dots and aminated carbon nanotubes (Cu-CDs/NH2-CNTs) nanocomposites were synthesized by a one-step growth method, and the composites were characterized for their performance. An electrochemical sensor for sensitive detection of bisphenol A (BPA) was developed for using Cu-CDs/NH2-CNTs nanocomposites modified with glassy carbon electrodes (GCE). The sensor exhibited an excellent electrochemical response to BPA in 0.2 M PBS (pH 7.0) under optimally selected conditions. The linear range of the sensor for BPA detection was 0.5-160 µM, and the detection limit (S/N = 3) was 0.13 µM. Moreover, the sensor has good interference immunity, stability and reproducibility. In addition, the feasibility of the practical application of the sensor was demonstrated by the detection of BPA in bottled drinking water and Liu Yang River water.


Asunto(s)
Compuestos de Bencidrilo , Cobre , Técnicas Electroquímicas , Electrodos , Límite de Detección , Nanotubos de Carbono , Fenoles , Contaminantes Químicos del Agua , Compuestos de Bencidrilo/análisis , Fenoles/análisis , Fenoles/química , Nanotubos de Carbono/química , Cobre/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Contaminantes Químicos del Agua/análisis , Agua Potable/análisis , Puntos Cuánticos/química , Carbono/química , Ríos/química
4.
Sci Rep ; 14(1): 10117, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698033

RESUMEN

In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.


Asunto(s)
Curcumina , Nanotubos de Carbono , Curcumina/farmacología , Curcumina/química , Nanotubos de Carbono/química , Línea Celular Tumoral , Humanos , Ratones , Animales , Ácido Fólico/química , Apoptosis/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/terapia , Terapia Fototérmica/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Portadores de Fármacos/química , Supervivencia Celular/efectos de los fármacos
5.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732243

RESUMEN

This study presents the functionalization of silk fabric with SWCNT ink. The first step was the formation of a polydopamine (PDA) thin coating on the silk fabric to allow for effective bonding of SWCNTs. PDA formation was carried out directly on the fabric by means of polymerization of dopamine in alkali conditions. The Silk/PDA fabric was functionalized with SWCNT ink of different SWCNT concentrations by using the dip-coating method. IR and Raman analyses show that the dominant ß-sheet structure of silk fibroin after the functionalization process remains unchanged. The heat resistance is even slightly improved. The hydrophobic silk fabric becomes hydrophilic after functionalization due to the influence of PDA and the surfactant in SWCNT ink. The ink significantly changes the electrical properties of the silk fabric, from insulating to conductive. The volume resistance changes by nine orders of magnitude, from 2.4 × 1012 Ω to 2.3 × 103 Ω for 0.12 wt.% of SWCNTs. The surface resistance changes by seven orders of magnitude, from 2.1 × 1012 Ω to 2.4 × 105 Ω for 0.17 wt.% of SWCNTs. The volume and surface resistance thresholds are determined to be about 0.05 wt.% and 0.06 wt.%, respectively. The low value of the percolation threshold indicates efficient functionalization, with high-quality ink facilitating the formation of percolation paths through SWCNTs and the influence of the PDA linker.


Asunto(s)
Conductividad Eléctrica , Indoles , Tinta , Nanotubos de Carbono , Polímeros , Seda , Indoles/química , Polímeros/química , Seda/química , Nanotubos de Carbono/química , Textiles , Interacciones Hidrofóbicas e Hidrofílicas
6.
Sci Rep ; 14(1): 10826, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734799

RESUMEN

Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.


Asunto(s)
ADN , Guanina , Nanotubos de Carbono , Nanotubos de Carbono/química , ADN/química , Guanina/química , Teoría Funcional de la Densidad , Adenina/química , Citosina/química , Timina/química , Análisis de Secuencia de ADN/métodos , Electrones , Modelos Moleculares , Humanos
7.
Mikrochim Acta ; 191(5): 251, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589663

RESUMEN

Nanocomposite microbeads (average diameter = 10-100 µm) were prepared by a microemulsion-solidification method and applied to the magnetic solid-phase extraction (m-SPE) of fourteen analytes, among pesticides, drugs, and hormones, from human urine samples. The microbeads, perfectly spherical in shape to maximize the surface contact with the analytes, were composed of magnetic nanoparticles dispersed in a polylactic acid (PLA) solid bulk, decorated with multi-walled carbon nanotubes (mPLA@MWCNTs). In particular, PLA was recovered from filters of smoked electronic cigarettes after an adequate cleaning protocol. A complete morphological characterization of the microbeads was performed via Fourier-transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy, thermogravimetric and differential scanning calorimetry analysis (TGA and DSC), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The recovery study of the m-SPE procedure showed yields ≥ 64%, with the exception of 4-chloro-2-methylphenol (57%) at the lowest spike level (3 µg L-1). The method was validated according to the main FDA guidelines for the validation of bioanalytical methods. Using liquid chromatography-tandem mass spectrometry, precision and accuracy were below 11% and 15%, respectively, and detection limits of 0.1-1.8 µg L-1. Linearity was studied in the range of interest 1-15 µg L-1 with determination coefficients greater than 0.99. In light of the obtained results, the nanocomposite microbeads have proved to be a valid and sustainable alternative to traditional sorbents, offering good analytical standards and being synthetized from recycled plastic material. One of the main objectives of the current work is to provide an innovative and optimized procedure for the recycling of a plastic waste, to obtain a regular and reliable microstructure, whose application is here presented in the field of analytical chemistry. The simplicity and greenness of the method endows the procedure with a versatile applicability in different research and industrial fields.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nanocompuestos , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Xenobióticos , Microesferas , Poliésteres , Extracción en Fase Sólida/métodos , Nanocompuestos/química , Fenómenos Magnéticos
8.
ACS Sens ; 9(4): 2156-2165, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38629405

RESUMEN

Anisotropic strain sensors capable of multidirectional sensing are crucial for advanced sensor applications in human motion detection. However, current anisotropic sensors encounter challenges in achieving a balance among high sensitivity, substantial stretchability, and a wide linear detection range. To address these challenges, a facile freeze-casting strategy was employed to construct oriented filler networks composed of carbon nanotubes and conductive carbon black within a brominated butyl rubber ionomer (iBIIR) matrix. The resulting anisotropic sensor based on the iBIIR composites exhibited distinct gauge factors (GF) in the parallel and vertical directions (GF∥ = 4.91, while GF⊥ = 2.24) and a broad linear detection range over a strain range of 190%. This feature enables the sensor to detect various human activities, including uniaxial pulse, finder bending, elbow bending, and cervical spine movements. Moreover, the ion-cross-linking network within the iBIIR, coupled with strong π-cation interactions between the fillers and iBIIR macromolecules, imparted high strength (12.3 MPa, nearly twice that of pure iBIIR) and an ultrahigh elongation at break (>1800%) to the composites. Furthermore, the sensor exhibited exceptional antibacterial effectiveness, surpassing 99% against both Escherichia coli and Staphylococcus aureus. Notably, the sensor was capable of wireless sensing. It is anticipated that anisotropic sensors will have extensive application prospects in flexible wearable devices.


Asunto(s)
Elastómeros , Nanotubos de Carbono , Tecnología Inalámbrica , Humanos , Elastómeros/química , Nanotubos de Carbono/química , Anisotropía , Dispositivos Electrónicos Vestibles , Hollín/química , Movimiento , Staphylococcus aureus/aislamiento & purificación
9.
Biosensors (Basel) ; 14(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38667181

RESUMEN

Carbon nanotube (CNT)-based nanocomposites have found applications in making sensors for various types of physiological sensing. However, the sensors' fabrication process is usually complex, multistep, and requires longtime mixing and hazardous solvents that can be harmful to the environment. Here, we report a flexible dry silver (Ag)/CNT/polydimethylsiloxane (PDMS) nanocomposite-based sensor made by a solvent-free, low-temperature, time-effective, and simple approach for electrophysiological recording. By mechanical compression and thermal treatment of Ag/CNT, a connected conductive network of the fillers was formed, after which the PDMS was added as a polymer matrix. The CNTs make a continuous network for electrons transport, endowing the nanocomposite with high electrical conductivity, mechanical strength, and durability. This process is solvent-free and does not require a high temperature or complex mixing procedure. The sensor shows high flexibility and good conductivity. High-quality electroencephalography (EEG) and electrooculography (EOG) were performed using fabricated dry sensors. Our results show that the Ag/CNT/PDMS sensor has comparable skin-sensor interface impedance with commercial Ag/AgCl-coated dry electrodes, better performance for noninvasive electrophysiological signal recording, and a higher signal-to-noise ratio (SNR) even after 8 months of storage. The SNR of electrophysiological signal recording was measured to be 26.83 dB for our developed sensors versus 25.23 dB for commercial Ag/AgCl-coated dry electrodes. Our process of compress-heating the functional fillers provides a universal approach to fabricate various types of nanocomposites with different nanofillers and desired electrical and mechanical properties.


Asunto(s)
Dimetilpolisiloxanos , Nanocompuestos , Nanotubos de Carbono , Plata , Nanocompuestos/química , Nanotubos de Carbono/química , Plata/química , Dimetilpolisiloxanos/química , Electroencefalografía , Conductividad Eléctrica , Técnicas Biosensibles , Humanos , Electrooculografía , Electrodos , Relación Señal-Ruido
10.
Biosensors (Basel) ; 14(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38667184

RESUMEN

Ammonia (NH3) is a harmful atmospheric pollutant and an important indicator of environment, health, and food safety conditions. Wearable devices with flexible gas sensors offer convenient real-time NH3 monitoring capabilities. A flexible ammonia gas sensing system to support the internet of things (IoT) is proposed. The flexible gas sensor in this system utilizes polyaniline (PANI) with multiwall carbon nanotubes (MWCNTs) decoration as a sensitive material, coated on a silver interdigital electrode on a polyethylene terephthalate (PET) substrate. Gas sensors are combined with other electronic components to form a flexible electronic system. The IoT functionality of the system comes from a microcontroller with Wi-Fi capability. The flexible gas sensor demonstrates commendable sensitivity, selectivity, humidity resistance, and long lifespan. The experimental data procured from the sensor reveal a remarkably low detection threshold of 0.3 ppm, aligning well with the required specifications for monitoring ammonia concentrations in exhaled breath gas, which typically range from 0.425 to 1.8 ppm. Furthermore, the sensor demonstrates a negligible reaction to the presence of interfering gases, such as ethanol, acetone, and methanol, thereby ensuring high selectivity for ammonia detection. In addition to these attributes, the sensor maintains consistent stability across a range of environmental conditions, including varying humidity levels, repeated bending cycles, and diverse angles of orientation. A portable, stable, and effective flexible IoT system solution for real-time ammonia sensing is demonstrated by collecting data at the edge end, processing the data in the cloud, and displaying the data at the user end.


Asunto(s)
Amoníaco , Compuestos de Anilina , Nanotubos de Carbono , Amoníaco/análisis , Nanotubos de Carbono/química , Compuestos de Anilina/química , Técnicas Biosensibles , Tecnología Inalámbrica , Humanos , Dispositivos Electrónicos Vestibles
11.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667179

RESUMEN

Nano-doped hollow fiber is currently receiving extensive attention due to its multifunctionality and booming development. However, the microfluidic fabrication of nano-doped hollow fiber in a simple, smooth, stable, continuous, well-controlled manner without system blockage remains challenging. In this study, we employ a microfluidic method to fabricate nano-doped hollow fiber, which not only makes the preparation process continuous, controllable, and efficient, but also improves the dispersion uniformity of nanoparticles. Hydrogel hollow fiber doped with carbon nanotubes is fabricated and exhibits superior electrical conductivity (15.8 S m-1), strong flexibility (342.9%), and versatility as wearable sensors for monitoring human motions and collecting physiological electrical signals. Furthermore, we incorporate iron tetroxide nanoparticles into fibers to create magnetic-driven micromotors, which provide trajectory-controlled motion and the ability to move through narrow channels due to their small size. In addition, manganese dioxide nanoparticles are embedded into the fiber walls to create self-propelled micromotors. When placed in a hydrogen peroxide environment, the micromotors can reach a top speed of 615 µm s-1 and navigate hard-to-reach areas. Our nano-doped hollow fiber offers a broad range of applications in wearable electronics and self-propelled machines and creates promising opportunities for sensors and actuators.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Nanotubos de Carbono/química , Humanos , Conductividad Eléctrica , Compuestos de Manganeso/química , Nanopartículas , Óxidos/química
12.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667189

RESUMEN

L-Lactate is an important bioanalyte in the food industry, biotechnology, and human healthcare. In this work, we report the development of a new L-lactate electrochemical biosensor based on the use of multiwalled carbon nanotubes non-covalently functionalized with avidin (MWCNT-Av) deposited at glassy carbon electrodes (GCEs) as anchoring sites for the bioaffinity-based immobilization of a new recombinant biotinylated lactate oxidase (bLOx) produced in Escherichia coli through in vivo biotinylation. The specific binding of MWCNT-Av to bLOx was characterized by amperometry, surface plasmon resonance (SPR), and electrochemical impedance spectroscopy (EIS). The amperometric detection of L-lactate was performed at -0.100 V, with a linear range between 100 and 700 µM, a detection limit of 33 µM, and a quantification limit of 100 µM. The proposed biosensor (GCE/MWCNT-Av/bLOx) showed a reproducibility of 6.0% and it was successfully used for determining L-lactate in food and enriched serum samples.


Asunto(s)
Avidina , Técnicas Biosensibles , Ácido Láctico , Oxigenasas de Función Mixta , Nanotubos de Carbono , Nanotubos de Carbono/química , Oxigenasas de Función Mixta/química , Avidina/química , Técnicas Electroquímicas , Resonancia por Plasmón de Superficie , Enzimas Inmovilizadas/química , Escherichia coli , Biotinilación , Electrodos , Espectroscopía Dieléctrica , Límite de Detección
13.
Int J Biol Macromol ; 267(Pt 2): 131463, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599418

RESUMEN

The rational and effective combination of different electrochemical substances to prepare high-performance supercapacitor electrodes has been widely studied by researchers. Currently, most work focuses on polymerizing conductive polymers onto the surface of nanocellulose and carbon materials, and then preparing them into supercapacitor electrodes. This method is effective, but the process is cumbersome. Therefore, we propose a simpler and more effective method. A hydrogel was prepared by using TEMPO oxidized cellulose nanofibers (TOCNF)/multi walled carbon nanotubes (MWCNT), and then immersed in aniline and FeCI3 solutions for 24 h to obtain a hydrogel electrode. At a current density of 0.5 mA cm-2, it exhibits an area specific capacitance of 1028 mF cm-2, with a maximum strain of 58 % and a compressive stress of 150 KPa. The assembled symmetrical supercapacitor exhibits a high specific capacitance of 303 mF cm-2 at a current density of 0.5 mA cm-2. The research results indicate that the proposed method is a new feasible approach for developing supercapacitors.


Asunto(s)
Celulosa , Capacidad Eléctrica , Electrodos , Hidrogeles , Nanotubos de Carbono , Celulosa/química , Nanotubos de Carbono/química , Hidrogeles/química , Nanofibras/química
14.
Int J Biol Macromol ; 267(Pt 2): 131533, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608988

RESUMEN

As a renewable aromatic compound with enormous production potential, lignin has various potential high-value utilization pathways, but the success achieved in the field of photocatalysis is limited. Herein, this work prepares a new type of photocatalyst by modifying Graphitic Carbon Nitride Nanotubes (CNT) with self-assembled lignin nanospheres for the photocatalytic production of H2O2 and the degradation of azo dyes. Under light conditions, lignin enhances the production of H2O2 through oxygen reduction and collaborates with carbon nitride tubes to generate O2- and 1O2. Furthermore, carbon nitride tubes form electron-rich regions with lignin, promoting the transfer of electrons from adsorbed aromatic pollutants to this region, thereby facilitating their degradation. The experimental results indicate that the addition of 5 % lignin significantly enhances the photocatalytic degradation efficiency of azo dyes, with a degradation rate 1.87 times higher than that of the original carbon nitride tubes. Furthermore, CNL also have excellent degradation ability to pollutants in actual wastewater. This study provides new insights and prospects for the high-value utilization of lignin, enabling it to be used as a photocatalytic co-catalyst to participate in the photocatalytic degradation of environmental pollutants.


Asunto(s)
Grafito , Peróxido de Hidrógeno , Lignina , Lignina/química , Grafito/química , Catálisis , Peróxido de Hidrógeno/química , Nanotubos/química , Nitrilos/química , Compuestos Azo/química , Compuestos de Boro/química , Contaminantes Químicos del Agua/química , Procesos Fotoquímicos , Nanotubos de Carbono/química , Compuestos de Nitrógeno
15.
J Chromatogr A ; 1725: 464875, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38678692

RESUMEN

Ultrasonic-assisted dispersive micro solid phase extraction (UA-DMSPE) is proposed as a fast and easy technique for the extraction and preconcentration of methadone and tramadol from serum samples. Different sorbents including carbon nanotubes, oxidized carbon nanotubes, and TiO2 nanoparticles were compared to extract methadone and tramadol. The best performance was obtained using oxidized carbon nanotubes due to the strong affinity between the drugs and carbon nanotube adsorbents. Final analysis of drugs performed by using gas chromatography-mass spectrometric detection. Different parameters affecting the extraction efficiency, such as the sample volume, amount of adsorbent, desorption solvent type and volume, centrifugation time, and speed were investigated and optimized. The striking features of this technique are correlated to its speed and the small volumes of sample (about 1 mL), desorption solvent (about 50 µL), and adsorbent (about 0.001 g) for analysis of drugs, and finally, milder centrifugation conditions relative to the previously reported adsorbent. The optimal parameters were achieved as follows: pH value was set at 9, the sample volume was adjusted to 1200 µL, the amount of adsorbent used was 1 mg, the extraction time was set at 5 min, and the volume of the desorption solvent was adjusted to 50 µL. The limits of detections (0.5 and 0.8 ng mL-1) and quantifications (1.5 and 2.5 ng mL-1) were obtained for methadone and tramadol, respectively. The developed method also showed good repeatability, relative standard deviation (RSD) of 9.49 % and 7.47 % (n = 5), for the spiked aqueous solution at the concentration level of 10, 50, and 100 ng mL-1 for analytes, and linearity, R ≥ 0.9809. The results showed that UA-DMSPE is a quick, relatively inexpensive, and environmentally friendly alternative technique for the extraction of opiate drugs from serum samples.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Metadona , Microextracción en Fase Sólida , Tramadol , Tramadol/sangre , Metadona/sangre , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Microextracción en Fase Sólida/métodos , Nanotubos de Carbono/química , Reproducibilidad de los Resultados , Adsorción , Titanio
16.
ACS Nano ; 18(16): 10829-10839, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607639

RESUMEN

The use of nanomaterials to improve plant immunity for sustainable agriculture is gaining increasing attention; yet, the mechanisms involved remain unclear. In contrast to metal-based counterparts, carbon-based nanomaterials do not release components. Determining how these carbon-based nanomaterials strengthen the resistance of plants to diseases is essential as well as whether shape influences this process. Our study compared single-walled carbon nanotubes (SWNTs) and graphene oxide (GO) infiltration against the phytopathogen Pseudomonas syringae pv tomato DC3000. Compared with plants treated with GO, plants primed with SWNTs showed a 29% improvement in the pathogen resistance. Upon nanopriming, the plant displayed wound signaling with transcriptional regulation similar to that observed under brushing-induced mechanostimulation. Compared with GO, SWNTs penetrated more greatly into the leaf and improved transport, resulting in a heightened wound response; this effect resulted from the tubular structure of SWNTs, which differed from the planar form of GO. The shape effect was further demonstrated by wrapping SWNTs with bovine serum albumin, which masked the sharp edges of SWNTs and resulted in a significant decrease in the overall plant wound response. Finally, we clarified how the local wound response led to systemic immunity through increased calcium ion signaling in distant plant areas, which increased the antimicrobial efficacy. In summary, our systematic investigation established connections among carbon nanomaterial priming, mechanostimulation, and wound response, revealing recognition patterns in plant immunity. These findings promise to advance nanotechnology in sustainable agriculture by strengthening plant defenses, enhancing resilience, and reducing reliance on traditional chemicals.


Asunto(s)
Grafito , Nanotubos de Carbono , Pseudomonas syringae , Pseudomonas syringae/efectos de los fármacos , Nanotubos de Carbono/química , Grafito/química , Grafito/farmacología , Inmunidad de la Planta/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/metabolismo
17.
An Acad Bras Cienc ; 96(1): e20230067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656055

RESUMEN

Platinum nanoparticles supported by carbon nanotubes were obtained by a simple chemical route and used for preparation of electrochemical sensor towards caffeine determination. Carbon nanotubes were used before and after an acid treatment, yielding two different materials. Morphological and structural characterization of these materials showed platinum nanoparticles (size around 12 nm) distributed randomly along carbon nanotubes. Modified electrodes were directly prepared through a dispersion of these materials. Voltammetric studies in the presence of caffeine revealed an electrocatalytic effect of platinum oxides, electrochemically produced from the chemical oxidation of the platinum nanoparticles. This behavior was explored in the development a selective method for caffeine determination based on platinum oxide reduction at a lower potential value (+0.45 V vs. Ag/AgCl). Using the best set of experimental conditions, it was shown a linear relationship for the caffeine concentration ranging from 5.0 to 25 µmol L-1 with a sensitivity of 449 nA L µmol-1. Limits of detection and quantification of 0.54 and 1.80 µmol L-1 were calculated, respectively. Recovery values for real samples of caffeine pharmaceutical formulations between 98.6% and 101.0% (n = 3) were obtained using the proposed procedure. Statistical calculations showed good concordance (95% confidence level) between the added and recovery values.


Asunto(s)
Cafeína , Técnicas Electroquímicas , Nanopartículas del Metal , Nanotubos de Carbono , Platino (Metal) , Nanotubos de Carbono/química , Cafeína/análisis , Cafeína/química , Platino (Metal)/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección , Reproducibilidad de los Resultados , Oxidación-Reducción
18.
Sci Rep ; 14(1): 9545, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664493

RESUMEN

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Asunto(s)
Antibacterianos , Antineoplásicos , Bismuto , Nanocompuestos , Compuestos de Tungsteno , Nanocompuestos/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Bismuto/química , Bismuto/farmacología , Compuestos de Tungsteno/química , Compuestos de Tungsteno/farmacología , Nanotubos de Carbono/química , Pruebas de Sensibilidad Microbiana , Supervivencia Celular/efectos de los fármacos , Células Hep G2
19.
J Environ Sci (China) ; 143: 12-22, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644010

RESUMEN

Selective catalytic NH3-to-N2 oxidation (NH3-SCO) is highly promising for abating NH3 emissions slipped from stationary flue gas after-treatment devices. Its practical application, however, is limited by the non-availability of low-cost catalysts with high activity and N2 selectivity. Here, using defect-rich nitrogen-doped carbon nanotubes (NCNT-AW) as the support, we developed a highly active and durable copper-based NH3-SCO catalyst with a high abundance of cuprous (Cu+) sites. The obtained Cu/NCNT-AW catalyst demonstrated outstanding activity with a T50 (i.e. the temperature to reach 50% NH3 conversion) of 174°C in the NH3-SCO reaction, which outperformed not only the Cu catalyst supported on N-free O-functionalized CNTs (OCNTs) or NCNT with less surface defects, but also those most active Cu catalysts in open literature. Reaction kinetics measurements and temperature-programmed surface reactions using NH3 as a probe molecule revealed that the NH3-SCO reaction on Cu/NCNT-AW follows an internal selective catalytic reaction (i-SCR) route involving nitric oxide (NO) as a key intermediate. According to mechanistic investigations by X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray absorption spectroscopy, the superior NH3-SCO performance of Cu/NCNT-AW originated from a synergy of surface defects and N-dopants. Specifically, surface defects promoted the anchoring of CuO nanoparticles on N-containing sites and, thereby, enabled efficient electron transfer from N to CuO, increasing significantly the fraction of SCR-active Cu+ sites in the catalyst. This study puts forward a new idea for manipulating and utilizing the interplay of defects and N-dopants on carbon surfaces to fabricate Cu+-rich Cu catalysts for efficient abatement of slip NH3 emissions via selective oxidation.


Asunto(s)
Amoníaco , Cobre , Oxidación-Reducción , Cobre/química , Amoníaco/química , Catálisis , Nanotubos de Carbono/química , Contaminantes Atmosféricos/química , Temperatura , Modelos Químicos
20.
Anal Chem ; 96(17): 6683-6691, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619493

RESUMEN

Hydrogen peroxide (H2O2) and ascorbic acid (AA), acting as two significant indicative species, correlate with the oxidative stress status in living brains, which have historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease (PD). The development of efficient biosensors for the simultaneous measurement of their levels in living brains is vital to understand their roles played in the brain and their interactive relationship in the progress of these diseases. Herein, a robust ratiometric electrochemical microsensor was rationally designed to realize the determination of H2O2 and AA simultaneously. Therefore, a specific probe was designed and synthesized with both recognition units responsible for reacting with H2O2 to produce a detectable signal on the microsensor and linkage units helping the probe modify onto the carbon substrate. A topping ingredient, single-walled carbon nanotubes (SWCNTs) was added on the surface of the electrode, with the purpose of not only facilitating the oxidation of AA but also absorbing methylene blue (MB), prompting to read out the inner reference signal. This proposed electrochemical microsensor exhibited a robust ability to real-time track H2O2 and AA in linear ranges of 0.5-900 and 10-1000 µM with high selectivity and accuracy, respectively. Eventually, the efficient electrochemical microsensor was successfully applied to the simultaneous measurement of H2O2 and AA in the rat brain, followed by microinjection, and in the PD mouse brain.


Asunto(s)
Ácido Ascórbico , Encéfalo , Técnicas Electroquímicas , Peróxido de Hidrógeno , Nanotubos de Carbono , Peróxido de Hidrógeno/análisis , Ácido Ascórbico/análisis , Animales , Ratones , Encéfalo/metabolismo , Nanotubos de Carbono/química , Técnicas Biosensibles , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA